Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw.

نویسندگان

  • Abuzer Çelekli
  • Hüseyin Bozkurt
  • Faruk Geyik
چکیده

Artificial neural network (ANN), pseudo second-order kinetic, and gene expression programming (GEP) models were constructed to predict removal efficiency of Lanaset Red G (LR G) using lentil straw (LS) based on 1152 experimental sets. The sorption process was dependent on adsorbent particle size, pH, initial dye concentration, and contact time. These variables were used as input to construct a neural network for prediction of dye uptake as output. ANN was an excellent model because of the lowest error and the highest coefficient values. ANN indicated that initial dye concentration had the strongest effect on dye uptake, followed by pH. The GEP model successfully described the sorption kinetic process as function of adsorbent particle size, pH, initial dye concentration, and contact time in a single equation. Low cost adsorbent, LS, had a great potential to remove LR G as an eco-friendly process, which was well described by GEP and ANN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction

No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Investigation of potato peel-based bio-sorbent efficiency in reactive dye removal: Artificial neural network modeling and genetic algorithms optimization

Over the last few years, a number of investigations have been conducted to explore the low cost sorbents for the decontamination of toxic materials. Undoubtedly, agricultural waste mass is presently one of the most challenging topics, which has been gaining attention during the past several decades. Wastes are very cheap and easily available material in production of sorbent. Therefore, the Rea...

متن کامل

Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks

Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...

متن کامل

Synthesis of nickel ferrite nanoparticles as an efficient magnetic sorbent for removal of an azo-dye: Response surface methodology and neural network modeling

In this research, nickel ferrite (NiFe2O4) nanoparticles (NFNs) are prepared through coprecipitation method, and applied for adsorption removal of a model organic pollutant, methyl orange (MO). The characterization of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2013